Simplified equations for rapidly calculating a parabola and a Gaussian function by the least-squares method with engineering applications.
Bibliographic Information
- Other Title
-
- 最小二乗法による放物線およびガウス関数の迅速な計算法とその工学への応用
- サイショウ 2ジョウホウ ニ ヨル ホウブツセン オヨビ ガウス カンスウ ノ
Search this article
Description
For engineering purposes, it often becomes necessary to fit a parabola and a Gaussian function to equally spaced n data points (xi, yi) by using the least squares method. Simplified equations for calculating these functions are derived for rapid calculation and to avoid error due to the overflow of figures in the calculation with a computer. The coefficients of the parabola given by y=a(x-x^-)2+b(x-x^-)+c are [numerical formula] where, x^- is the mean and e is a fixed interval of x and [numerical formula] For a Gaussian function given by y=exp[a(x-x^-)2+b(x-x^-)+c], the coefficients can be calculated from Eq(1) using ci, and substituting ln yi for yi in Eq(2).
Journal
-
- TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
-
TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A 54 (508), 2176-2180, 1988
The Japan Society of Mechanical Engineers
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390001204479247872
-
- NII Article ID
- 110002373758
- 10005309503
-
- NII Book ID
- AN0018742X
-
- ISSN
- 18848338
- 03875008
-
- NDL BIB ID
- 3202167
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed