Preparation of Oligoselenodiglutathiones and Their Suppressive Effects on Oxidative DNA Damage Induced by Catechol and Copper

この論文をさがす

抄録

We previously reported that novel polyselenodithiols are produced along with selenotrisulfide when a thiol (penicillamine) is reacted with selenite (H2SeO3). Here, we report the production of oligoselenodiglutathiones and their suppressive effects on oxidative DNA damage. Oligoselenodiglutathiones were produced by exceeding the conventional reaction ratio of [H2SeO3]/[glutathione (GSH)]=1/4. In liquid chromatography-mass spectrometry (LC/MS) analysis, the observed isotope patterns showed good agreement with the calculated isotope patterns assuming that two, three, or four selenium (Se) atoms were incorporated in the molecules. Based on 1H NMR and MS data, the structures of oligoselenodiglutathiones were assumed to have a common symmetrical structure that was centered by linearly bound Se atoms “wedged” in the disulfide bond of two GSH molecules. At 8 μM, selenodiglutathione (GSSeSG) and diselenodiglutathione (GSSe2SG) showed 80% suppression of the formation of 8-oxo-7,8-dihydroxy-2'-deoxyguanosine (in calf thymus DNA) induced by carcinogenic catechol and copper. The suppressive effects of GSSeSG and GSSe2SG were around threefold higher than that of glutathione disulfide at the same concentration, and the suppressive effect was not observed for H2SeO3 or GSH. Thus, formation of oligoselenodiglutathiones is important for Se or GSH to exert its protective effects on biomolecules from oxidative damage.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (24)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ