Improving Heat Transfer with Taylor Vortices in a Compact Modified Couette-Taylor Apparatus

この論文をさがす

抄録

A numerical study has been conducted to determine the effect of radial heating on the stability of Taylor vortices in a system formed by concentric conical cylinders. The outer conical cylinder is stationary while the inner conical cylinder rotates. Both conical cylinders have the same apex angle resulting in a constant annular gap. The study of the effects of the introduction of buoyancy on the flow properties has been accomplished by considering both conical cylinders to be isothermal, the inner conical cylinder at a higher temperature than the outer conical cylinder. The calculations are achieved by the use of a Simplified Marker and Cell algorithm using a staggered mesh grid. The investigation is concerned with radius ratios of 0.8 defined at the top of the flow system. The results have shown that the apex angle affected the symmetry of the flow structures and the heat transfer mechanism. It was revealed through the Nusselt number that the overall heat transfer increased when the apex angle was increased.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (26)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ