Three-Dimensional Simulations of Vortex Ring Formation from Falling Drops in an Immiscible Viscous Liquid
-
- Ohta Mitsuhiro
- Division of Applied Sciences, Graduate School of Engineering, Muroran Institute of Technology
-
- Akama Yu
- Division of Applied Sciences, Graduate School of Engineering, Muroran Institute of Technology
-
- Yoshida Yutaka
- Division of Applied Sciences, Graduate School of Engineering, Muroran Institute of Technology
-
- Sussman Mark
- Department of Mathematics, Florida State University
この論文をさがす
説明
We conduct a numerical study on the formation process of vortex rings that were observed in a previous experimental study. The numerical simulation of the process is challenging since it is a three-dimensional problem involving unstable drop motion. We use a method in which a three-dimensional domain is discretized; the coupled level-set/volume-of-fluid (CLSVOF) method is used to determine the motion of the drop interface and a sharp interface treatment is used for enforcing the boundary conditions at the drop interface. It is numerically shown that there are two different evolution regimes for vortex ring motion, depending on the value of the Eötvös number (Eo). The simulation results show that the transient evolution process of a vortex ring is sensitive to the drop size. Thus, our results agree with those of the previous experimental study. We also explore the effect of the viscosity ratio (=μD/μC) on vortex ring formation resulting from a falling drop.
収録刊行物
-
- JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
-
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 42 (9), 648-655, 2009
公益社団法人 化学工学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001204569141376
-
- NII論文ID
- 10028155998
-
- NII書誌ID
- AA00709658
-
- ISSN
- 18811299
- 00219592
-
- NDL書誌ID
- 10504240
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可