書誌事項
- タイトル別名
-
- A Brain-like Learning System with Supervised, Unsupervised and Reinforcement Learning
- 教師あり学習・教師なし学習・強化学習を複合したbrain-like学習システム
- キョウシ アリ ガクシュウ キョウシ ナシ ガクシュウ キョウカ ガクシュウ オ フクゴウ シタ brain like ガクシュウ システム
この論文をさがす
説明
Our brain has three different learning paradigms: supervised, unsupervised and reinforcement learning. And it is suggested that those learning paradigms relate deeply to the cerebellum, cerebral cortex and basal ganglia in the brain, respectively. Inspired by these knowledge of brain, we present a brain-like learning system with those three different learning algorithms. The proposed system consists of three parts: the supervised learning (SL) part, the unsupervised learning (UL) part and the reinforcement learning (RL) part. The SL part, corresponding to the cerebellum of brain, learns an input-output mapping by supervised learning. The UL part, corresponding to the cerebral cortex of brain, is a competitive learning network, and divides an input space to subspaces by unsupervised learning. The RL part, corresponding to the basal ganglia of brain, optimizes the model performance by reinforcement learning. Numerical simulations show that the proposed brain-like learning system optimizes its performance automatically and has superior performance to an ordinary neural network.
収録刊行物
-
- 電気学会論文誌C(電子・情報・システム部門誌)
-
電気学会論文誌C(電子・情報・システム部門誌) 126 (9), 1165-1172, 2006
一般社団法人 電気学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001204604058496
-
- NII論文ID
- 10019290100
-
- NII書誌ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL書誌ID
- 8080910
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可