A Consideration for Electroencephalogram Analysis using Self-Organizing Map Based on Learning Algorithm for Plural-Attribue Information
-
- Ito Shin-ichi
- Tokushima University
-
- Ito Momoyo
- Tokushima University
-
- Fukumi Minoru
- Tokushima University
Bibliographic Information
- Other Title
-
- 複属性データ対応型自己組織化マップを用いた脳波分析に関する一考察
- フクゾクセイ データ タイオウガタ ジコ ソシキカ マップ オ モチイタ ノウハ ブンセキ ニ カンスル イチ コウサツ
Search this article
Description
<p>This paper discusses a method to detect electroencephalogram (EEG) patterns using a self-organizing map (SOM) based on a learning algorithm for plural-attribute information (SOMPA). The input data for SOMPA has two attributes which are EEG feature and individual feature. We set the EEG feature to main feature and individual feature to sub-attribute information. The winning node in the learning algorithm of SOMPA is determined by using main feature and sub-attribute information. In the preprocessing, we extract the EEG feature vector by calculating the time average on each frequency band which are θ, α and β, respectively. The individual feature is analyzed though the ego analysis using psychological testing. In order to prove the effectiveness of the proposed method, we conduct experiments using real EEG data. The experimental results show that the EEG pattern detection accuracy using SOMPA improves compared with the standard SOM.</p>
Journal
-
- IEEJ Transactions on Electronics, Information and Systems
-
IEEJ Transactions on Electronics, Information and Systems 137 (2), 302-309, 2017
The Institute of Electrical Engineers of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390001204607067392
-
- NII Article ID
- 130005308465
-
- NII Book ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL BIB ID
- 027968083
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- OpenAIRE
-
- Abstract License Flag
- Disallowed