書誌事項
- タイトル別名
-
- A Neural Network Model to Learn Multiple Tasks under Dynamic Environments
- ドウテキ カンキョウ カ デ フクスウ タスク オ ガクシュウ スル ニューラルネット モデル
この論文をさがす
説明
When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.
収録刊行物
-
- 電気学会論文誌C(電子・情報・システム部門誌)
-
電気学会論文誌C(電子・情報・システム部門誌) 130 (1), 21-28, 2010
一般社団法人 電気学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001204607495424
-
- NII論文ID
- 10026227451
-
- NII書誌ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL書誌ID
- 10539359
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可