書誌事項
- タイトル別名
-
- A Deep Q Network with Boltzmann Selection
- ボルツマン センタク オ モチイタ Deep Q Network
この論文をさがす
説明
<p>The reinforcement learning is a method of training for an agent for accomplishing task by selecting suitable action from the current state. Deep Q network is combining convolutional network with Q-learning. By using the Convolutional Neural Network, Deep Q Network can apply to large dimentional input state tasks without special pre-processing. However Deep Q Network needs a large iteration for getting excellent outputs. The reason of that the Deep Q Network is using ε-greedy for action selection, and the ε is set to high value (close to one) in initial stage in learning. High ε value means that the agent selects action randomly in the learning. Hence, the agent needs large number of iteration of learning for accomplishing a task. In this paper adopts the Boltzmann selection to Deep Q Network. Finally, our algorithm has been applied to 2 kinds of arcade learning environment tasks, and results showed that our algorithm is better than ordinary Deep Q Network.</p>
収録刊行物
-
- 電気学会論文誌C(電子・情報・システム部門誌)
-
電気学会論文誌C(電子・情報・システム部門誌) 137 (12), 1676-1683, 2017
一般社団法人 電気学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001204610025472
-
- NII論文ID
- 130006235420
-
- NII書誌ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL書誌ID
- 028725098
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可