Higher-Codimensional Boundary Value Problems and $F$-Mild Microfunctions —Local and Microlocal Uniqueness—
-
- Oaku Toshinori
- Department of Mathematical Sciences, Yokohama City University
-
- Yamazaki Susumu
- Research Fellow of The Japan Society for The Promotion of Science, Graduate School of Mathematical Sciences, The University of Tokyo
書誌事項
- タイトル別名
-
- Higher-Codimensional Boundary Value Problems and <I>F</I>-Mild Microfunetions —Local and Microlocal Uniqueness—
- Higher-codimensional boundary value problems and F-mild microfunctions
この論文をさがす
説明
For the study of local and microlocal boundary value problems with a boundary of codimension greater than one, sheaves of F-mild hyperfunctions and F-mild microfunctions are introduced. They are refinements of the notions of hyperfunctions and microfunctions with real analytic parameters and have natural boundary values. F-mild solutions of a general \mathscr{D}-Module \mathscr{M} (that is, a system of linear partial differential equations with analytic coefficients) are considered. In particular, local and microlocal uniqueness in the boundary value problem (the Holmgren type theorem) is proved if the boundary is non-characteristic for \mathscr{M}. or else if \mathscr{M} is Fuchsian along the boundary.
収録刊行物
-
- Publications of the Research Institute for Mathematical Sciences
-
Publications of the Research Institute for Mathematical Sciences 34 (5), 383-437, 1998
国立大学法人 京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001204955946496
-
- NII論文ID
- 130003585433
-
- ISSN
- 16634926
- 00345318
-
- MRID
- 1658125
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可