Bernstein Polynomials of a Smooth Function Restricted to an Isolated Hypersurface Singularity
-
- Torrelli Tristan
- Institut Élie Cartan, Université Henri Poincaré-Nancy I
この論文をさがす
説明
Let f, g be two germs of holomorphic functions on Cn such that f is smooth at the origin and (f, g) defines an analytic complete intersection (Z, 0) of codimension two. We study Bernstein polynomials of f associated with sections of the local cohomology module with support in X=g−1(0), and in particular some sections of its minimal extension. When (X, 0) and (Z, 0) have an isolated singularity, this may be reduced to the study of a minimal polynomial of an endomorphism on a finite dimensional vector space. As an application, we give an effective algorithm to compute those Bernstein polynomials when f is a coordinate and g is non-degenerate with respect to its Newton boundary.
収録刊行物
-
- Publications of the Research Institute for Mathematical Sciences
-
Publications of the Research Institute for Mathematical Sciences 39 (4), 797-822, 2003
国立大学法人 京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001204956299776
-
- NII論文ID
- 130003429183
-
- ISSN
- 16634926
- 00345318
-
- MRID
- 2025464
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可