Newton法によるLandau-Lifshitz-Gilbert方程式の解法
書誌事項
- タイトル別名
-
- Solution of Landau-Lifshitz-Gilbert Equation by Newton's Method
- Newtonホウ ニ ヨル Landau Lifshitz Gilbert ホウテイシキ ノ カイホウ
この論文をさがす
説明
The use of Newton’s method to solve the Landau-Lifshitz-Gilbert (LLG) equation discretized according to the Crank-Nicolson method is examined from the viewpoint of accuracy and computation time. Magnetization reversal and Bloch wall motion in a thin Permalloy film were calculated as an example. Although the convergence speed of Newton’s method is high, the solution of simultaneous algebraic equations requires a computation time of O(N3) in principle, when we denote the numbers of computing cells as N. If we take only the nearest-neighbor magnetostatic interaction into consideration in the implicit treatment, the coefficient matrix for the algebraic equation and the computation time are reduced to tridiagonal and O(N), respectively, in the case of one-dimensional calculation. Newton’s iteration can be repeated several times without increasing the order of computing time since the time required to calculate the demagnetizing field is O(N log N) if we use FFT. On detailed comparison with the Runge-Kutta method, a typical method for ordinary differential equations, the proposed method is found useful from the viewpoint of time-step dependence of numerical error and reliability.
収録刊行物
-
- 日本応用磁気学会誌
-
日本応用磁気学会誌 28 (3), 305-311, 2004
公益社団法人 日本磁気学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001205091957120
-
- NII論文ID
- 110002809708
-
- NII書誌ID
- AN0031390X
-
- ISSN
- 18804004
- 02850192
-
- NDL書誌ID
- 6871483
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- NDLデジコレ(旧NII-ELS)
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可