-
- KITAOKA Yoshiyuki
- Nagoya University
この論文をさがす
説明
<jats:p>Let <jats:italic>E/F</jats:italic> be a finite extension of algebraic number fields, <jats:italic>O<jats:sub>E</jats:sub>, O<jats:sub>F</jats:sub></jats:italic> the maximal orders of <jats:italic>E, F</jats:italic> respectively. A classical theorem of Springer [6] asserts that an anisotropic quadratic space over <jats:italic>F</jats:italic> remains anisotropic over <jats:italic>E</jats:italic> if the degree [<jats:italic>E</jats:italic>: <jats:italic>F</jats:italic>] is odd. From this follows that regular quadratic spaces <jats:italic>U, V</jats:italic> over <jats:italic>F</jats:italic> are isometric if they are isometric over <jats:italic>E</jats:italic> and [<jats:italic>E : F</jats:italic>] is odd. Earnest and Hsia treated similar problems for the spinor genera [2, 3]. We are concerned with the quadratic lattices. Let <jats:italic>L, M</jats:italic> be quadratic lattices over <jats:italic>O<jats:sub>F</jats:sub></jats:italic> in regular quadratic spaces <jats:italic>U, V</jats:italic> over <jats:italic>F</jats:italic> respectively.</jats:p>
収録刊行物
-
- Proceedings of the Japan Academy
-
Proceedings of the Japan Academy 52 (5), 219-220, 1976
日本学士院
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001205112090624
-
- NII論文ID
- 130005623794
-
- ISSN
- 21526842
- 00214280
- 03862194
- 00277630
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE