-
- Ephremidze Lasha
- A. Razmadze Mathematical Institute, Georgian Academy of Sciences
-
- Fujii Nobuhiko
- Department of Mathematics, Tokai University
この論文をさがす
説明
We prove that if ν and μ are arbitrary (signed) Borel measures (on the unit circle) such that M+ν(x) = M+μ(x) for each x, where M+ is the one-sided maximal operator (without modulus in the definition), then ν = μ. The proof is constructive and it shows how ν can be recovered from M+ν in the unique way.
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 60 (3), 695-717, 2008
一般社団法人 日本数学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205114693248
-
- NII論文ID
- 10024331872
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL書誌ID
- 9582996
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDL
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可