-
- Oh Tadahiro
- Department of Mathematics, Princeton University
-
- Quastel Jeremy
- Departments of Mathematics and Statistics, University of Toronto
この論文をさがす
説明
We construct a Gibbs measure for the nonlinear Schrödinger equation (NLS) on the circle, conditioned on prescribed mass and momentum:<br>$$d \mu_{a,b} = Z^{-1} 1_{ \{\int_{\mathbb{T}} |u|^2 = a\}} 1_{\{i \int_{\mathbb{T}} u \overline{u}_x = b\}}e^{\pm 1/p \int_{\mathbb{T}} |u|^p-1/2\int_{\mathbb{T}} |u|^2 } d P$$<br>for a ∈ ℝ+ and b ∈ ℝ, where P is the complex-valued Wiener measure on the circle. We also show that μa,b is invariant under the flow of NLS. We note that $i \int_{\mathbb{T}} u \overline{u}_x$ is the Lévy stochastic area, and in particular that this is invariant under the flow of NLS.
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 65 (1), 13-35, 2013
一般社団法人 日本数学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205115060992
-
- NII論文ID
- 10031177272
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL書誌ID
- 024208920
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可