Generalized capacity, Harnack inequality and heat kernels on metric spaces
-
- Grigor'yan Alexander
- Fakultät für Mathematik, Universität Bielefeld
-
- Hu Jiaxin
- Department of Mathematical Sciences, Tsinghua University
-
- Lau Ka-Sing
- Department of Mathematics, The Chinese University of Hong Kong
書誌事項
- タイトル別名
-
- Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces
この論文をさがす
説明
We give necessary and sufficient conditions for sub-Gaussian estimates of the heat kernel of a strongly local regular Dirichlet form on a metric measure space. The conditions for two-sided estimates are given in terms of the generalized capacity inequality and the Poincaré inequality. The main difficulty lies in obtaining the elliptic Harnack inequality under these assumptions. The conditions for upper bound alone are given in terms of the generalized capacity inequality and the Faber–Krahn inequality.
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 67 (4), 1485-1549, 2015
一般社団法人 日本数学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001205115297408
-
- NII論文ID
- 130005108949
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
- http://id.crossref.org/issn/00255645
-
- NDL書誌ID
- 026817536
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可