-
- LIU HUILI
- Department of Mathematics, Northeastern University
-
- WANG CHANGPING
- Department of Mathematical Sciences, Peking University
-
- ZHAO GUOSONG
- Department of Mathematics, Sichuan University
書誌事項
- タイトル別名
-
- MÖBIUS ISOTROPIC SUBMANIFOLDS IN $\\boldsymbol{S}^n$
この論文をさがす
説明
Let $x:\boldsymbol{M}^m \to \boldsymbol{S}^n$ be a submanifold in the $n$-dimensional sphere $\boldsymbol{S}^n$ without umbilics. Two basic invariants of $x$ under the Möbius transformation group in $\boldsymbol{S}^n$ are a 1-form $\Phi$ called the Möbius form and a symmetric (0,2) tensor ${\bf A}$ called the Blaschke tensor. $x$ is said to be Möbius isotropic in $\boldsymbol{S}^n$ if $\Phi \equiv 0$ and ${\bf A}=\lambda dx \cdot dx$ for some smooth function $\lambda$. An interesting property for a Möbius isotropic submanifold is that its conformal Gauss map is harmonic. The main result in this paper is the classification of Möbius isotropic submanifolds in $\boldsymbol{S}^n$. We show that (i) if $\lambda > 0$, then $x$ is Möbius equivalent to a minimal submanifold with constant scalar urvature in $\boldsymbol{S}^n$; (ii) if $\lambda=0$, then $x$ is Möbius equivalent to the pre-image of a stereographic projection of a minimal submanifold with constant scalar curvature in the $n$-dimensional Euclidean space $\boldsymbol{R}^n$; (iii) if $\lambda < 0$, then $x$ is Möbius equivalent to the image of the standard conformal map $\tau: \boldsymbol{H}^n \to \boldsymbol{S}^n_+$ of a minimal submanifold with constant scalar curvature in the $n$-dimensional hyperbolic space $\boldsymbol{H}^n$. This result shows that one can use Möbius differential geometry to unify the three different classes of minimal submanifolds with constant scalar curvature in $\boldsymbol{S}^n$, $\boldsymbol{R}^n$ and $\boldsymbol{H}^n$.
収録刊行物
-
- Tohoku Mathematical Journal, Second Series
-
Tohoku Mathematical Journal, Second Series 53 (4), 553-569, 2001
東北大学大学院理学研究科数学専攻
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205115729280
-
- NII論文ID
- 110000026962
-
- NII書誌ID
- AA00863953
-
- ISSN
- 2186585X
- 00408735
-
- MRID
- 1862218
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可