Associated variety, Kostant-Sekiguchi correspondence, and locally free U(\mathfrak{n})-action on Harish-Chandra modules
-
- GYOJA Akihiko
- Division of Mathematics Faculty of Integrated Human Studies Kyoto University Graduate School of Mathematics Nagoya University
-
- YAMASHITA Hiroshi
- Department of Mathematics Faculty of Science Hokkaido University
Bibliographic Information
- Other Title
-
- Associated variety,Kostant-Sekiguchi correspondence,and locally free U(n)-action on Harish-Chandra modules
- Dedicated to Professor Takeshi Hirai on his sixtieth birthday
Search this article
Description
Let \mathfrak{g} be a complex semisimple Lie algebra with symmetric decomposition \mathfrak{g}=\mathfrak{f}+\mathfrak{p}. For each irreducible Harish-Chandra (\mathfrak{g}, \mathfrak{f})-module X, we construct a family of nilpotent Lie subalgebras \mathfrak{n}(\mathcal{O}) of \mathfrak{g} whose universal enveloping algebras U(\mathfrak{n}(\mathcal{O})) act on X locally freely. The Lie subalgebras \mathfrak{n}(\mathcal{O}) are parametrized by the nilpotent orbits \mathcal{O} in the associated variety of X, and they are obtained by making use of the Cayley tranformation of \mathfrak{s}\mathfrak{l}2-triples (Kostant-Sekiguchi correspondence). As a consequence, it is shown that an irreducible Harish-Chandra module has the possible maximal Gelfand-Kirillov dimension if and only if it admits locally free U(\mathfrak{n}m)-action for \mathfrak{n}m=\mathfrak{n}(\mathcal{O}max) attached to a principal nilpotent orbit \mathcal{O}max in \mathfrak{p}$.
Journal
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 51 (1), 129-149, 1999
The Mathematical Society of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390001205116072704
-
- NII Article ID
- 10002151444
-
- NII Book ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- HANDLE
- 2115/69104
-
- MRID
- 1661024
-
- NDL BIB ID
- 4643293
-
- Text Lang
- en
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- OpenAIRE
-
- Abstract License Flag
- Disallowed