Properties of superharmonic functions satisfying nonlinear inequalities in nonsmooth domains
-
- Hirata Kentaro
- Faculty of Education and Human Studies, Akita University
この論文をさがす
説明
In a uniform domain Ω, we present a certain reverse mean value inequality and a Harnack type inequality for positive superharmonic functions satisfying a nonlinear inequality -Δu(x) ≤ cδΩ(x)-αu(x)p for x ∈ Ω, where c > 0, α ≥ 0 and p > 1 and δΩ(x) is the distance from a point x to the boundary of Ω. These are established by refining a boundary growth estimate obtained in our previous paper (2008). Also, we apply them to show the existence of nontangential limits of quotients of such functions and to give an extension of a certain minimum principle studied by Dahlberg (1976).
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 62 (4), 1043-1068, 2010
一般社団法人 日本数学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001205116112384
-
- NII論文ID
- 10027870995
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL書誌ID
- 10858991
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可