-
- Ikegami Yuki
- Institute of Mathematics, University of Tsukuba
-
- Kato Hisao
- Institute of Mathematics, University of Tsukuba
-
- Ueda Akihide
- Institute of Mathematics, University of Tsukuba
この論文をさがす
説明
In this paper, we study some dynamical properties of fixed-point free homeomorphisms of separable metric spaces. For each natural number p, we define eventual colorings within p of homeomorphisms which are generalized notions of colorings of fixed-point free homeomorphisms, and we investigate the eventual coloring number C(f,p) of a fixed-point free homeomorphism f: X → X with zero-dimensional set of periodic points. In particular, we show that if dim X < ∞, then there is a natural number p, which depends on dim X, and X can be divided into two closed regions C1 and C2 such that for each point x ∈ X, the orbit {fk(x)}k=0∞ of x goes back and forth between C1 − C2 and C2 − C1 within the time p.
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 65 (2), 375-387, 2013
一般社団法人 日本数学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001205116121344
-
- NII論文ID
- 10031177285
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL書誌ID
- 024428185
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可