[Updated on Apr. 18] Integration of CiNii Articles into CiNii Research

Tetra-ol Glycidyl Azide Polymer Combustion Modeling

Abstract

Tetra-ol glycidyl azide polymer (GAP) is one of the best candidates for the solid fuel of gas hybrid rocket system because of self-combustibility and high heat of formation. Combustion model of GAP was developed by Beckstead et al. and they applied it to tri-ol GAP successfully. We have applied this model to tetra-ol GAP as an initial attempt, and numerical simulation showed that maximum temperatures in the gas phase exceeded those of experimental results significantly, and calculated burning rates were much higher than strand burner data, thus, modification of the model taking account of combustion incompleteness was found to be necessary. Modifications of combustion model were made taking the residue analysis results into account as Blow Off Mechanism. Simulated final temperature in the gas phase and burning rate are lowered effectively and coincide well with experimental data adjusting kinetic parameters.

Journal

Details

Report a problem

Back to top