The Effects of X-Irradiation on Ex Vivo Expansion of Cryopreserved Human Hematopoietic Stem/Progenitor Cells

  • HAYASHI Naoki
    Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences
  • TAKAHASHI Kenji
    Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences
  • KASHIWAKURA Ikuo
    Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences

この論文をさがす

説明

In our previous study (Life Sciences 84: 598, 2009), we demonstrated that placental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells have the effect to support the regeneration of freshly prepared X-irradiated hematopoietic stem/progenitor cells (HSPCs). Generally, HSPCs are supplied from companies, institutions, and cell banks that cryopreserve them for clinical and experimental use. In this study, the influence of cryopreservation on the responses of HSPCs to irradiation and co-culture with stromal cells is assessed. After cryopreservation with the optimal procedure, 2 Gy-irradiated HSPCs were cultured with or without stromal cells supplemented with combination of interleukin-3, stem cell factor, and thrombopoietin. The population of relatively immature CD34+/CD38 cells in cryopreserved cells was significantly higher than in fresh cells prior to cryopreservation; furthermore, the hematopoietic progenitor populations of CD34+/CD45RA+ cells and CD34+/CD117+ cells in cryopreserved cells were significantly lower than that in fresh cells. However, the rate of expansion in the cryopreserved HSPCs was lower than in the fresh HSPCs. In the culture of cryopreserved cells irradiated with 2 Gy, the growth rates of CD34+ cells, CD34+/CD38 cells, and hematopoietic progenitors were greater than growth rates of their counterparts in the culture of fresh cells. Surprisingly, the effect to support the hematopoiesis in co-culture with stromal cells was never observed in the X-irradiated HSPCs after cryopreservation. The present results demonstrated that cryopreserving process increased the rate of immature and radio-resistant HSPCs but decreased the effects to support the hematopoiesis by stromal cells, thus suggesting that cryopreservation changes the character of HSPCs.

収録刊行物

参考文献 (67)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ