心電図に対するニューロンネットワークの非線形予測能力の評価(一般講演1A)

書誌事項

タイトル別名
  • Evaluation of Nonlinear Prediction Capability of Neuron Networks for Electrocardiogram

この論文をさがす

説明

Old drivers on vehicles of cars, trains and airplanes, etc. are increasing in our aged society advancing today. Therefore it's expected that the probability occurred of a serious accident by incapacitation of an old driver will be high. The analytical result of ECG is indispensable as the indicator to stop accidents of this kind from happening. The purpose of this paper is to estimate the model to solve general nonlinear predictability problems taking the case of an ECG. The models to evaluate comparison are a non-recursion type 1st-order Volterra neuron network (N1VNN) and a non-recursion type Volterra neuron network (NVNN) of discrete time. The result is which the NVNN is better than the N1 VNN.

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1390001205227936896
  • NII論文ID
    110008136382
  • DOI
    10.24466/pacbfsa.20.0_9
  • ISSN
    24242586
    13451510
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ