有限要素解析を用いた繰り返し屈曲下での冠動脈ステントの疲労破断予測

DOI

書誌事項

タイトル別名
  • Prediction of fatigue failure of coronary stent under cyclic bend loading using finite element analysis

説明

Introduction: Coronary stent fracture is recognized as causes of restenosis or thrombosis. We conducted finite element analysis (FEA) of coronary stent to predict fatigue failure under cyclic bend loading. Methods: Matched with manufacturing steps of coronary stent, a stent with a diameter, length and thickness of 1.8mm, 18mm, and 81μm was modeled. The stent was crimped on a balloon by applying enforced displacement until the outer diameter became 1.0mm. Next, the stent was deployed into a bended coronary artery model with an angulation of 125 degrees. Then, cyclic bend from 125 degrees to 105 degrees was applied to the stent. Results and Discussions: FEA of alternating stress, mean stress, and fatigue safety factor showed that there were nodes in unsafe zone in Goodman diagram. FEA suggested a threshold of cyclic bend angulation of the coronary stent on fatigue failure. Fracture locations observed in the cyclic-bend accelerated durability tests was consistent with the nodes of the stents which exceeded fatigue safety factor of 1. Conclusion: The comparison between FEA and accelerated durability tests indicated that FEA was useful to predict fatigue failure of the coronary stent.layer and gas layer.

収録刊行物

  • 生体医工学

    生体医工学 53 (Supplement), S136_01-S136_01, 2015

    公益社団法人 日本生体医工学会

詳細情報 詳細情報について

  • CRID
    1390001205266767104
  • NII論文ID
    130005163788
  • DOI
    10.11239/jsmbe.53.s136_01
  • ISSN
    18814379
    1347443X
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ