Bayesian Estimation of Soft-Core Potential Models for Spatial Point Patterns

この論文をさがす

説明

For a spatial pattern of points interacting with a repulsive potential in a given finite region of the plane, Bayesian estimation of parametric interaction potential functions between individuals (the Soft-Core models) is proposed. The computations are performed by the use of MCMC (Markov Chain Monte Carlo) methods. We consider two prior distributions with the jumping distributions within Markov chain simulations. Simulated marginal posterior densities of model parameters are fitted to the generalized gamma distribution. We compare marginal posterior modes with the maximum likelihood estimates of the model parameters. The validity of our procedure is graphically demonstrated by the L-statistics. As illustrations, the application to several real data is presented.

収録刊行物

参考文献 (29)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ