Bayesian Estimation of Soft-Core Potential Models for Spatial Point Patterns
-
- Okabe Masahilo
- Department of Statistical Science, The Graduate University for Advanced Studies
-
- Tanemura Masaharu
- The Institute of Statistical Mathematics
この論文をさがす
説明
For a spatial pattern of points interacting with a repulsive potential in a given finite region of the plane, Bayesian estimation of parametric interaction potential functions between individuals (the Soft-Core models) is proposed. The computations are performed by the use of MCMC (Markov Chain Monte Carlo) methods. We consider two prior distributions with the jumping distributions within Markov chain simulations. Simulated marginal posterior densities of model parameters are fitted to the generalized gamma distribution. We compare marginal posterior modes with the maximum likelihood estimates of the model parameters. The validity of our procedure is graphically demonstrated by the L-statistics. As illustrations, the application to several real data is presented.
収録刊行物
-
- JOURNAL OF THE JAPAN STATISTICAL SOCIETY
-
JOURNAL OF THE JAPAN STATISTICAL SOCIETY 36 (2), 121-147, 2006
日本統計学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205286483200
-
- NII論文ID
- 110005716711
-
- NII書誌ID
- AA1105098X
-
- ISSN
- 13486365
- 18822754
-
- NDL書誌ID
- 8572732
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDL
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可