-
- Pless Robert
- Washington University
-
- Souvenir Richard
- University of North Carolina
この論文をさがす
説明
Many natural image sets are samples of a low-dimensional manifold in the space of all possible images. Understanding this manifold is a key first step in understanding many sets of images, and manifold learning approaches have recently been used within many application domains, including face recognition, medical image segmentation, gait recognition and hand-written character recognition. This paper attempts to characterize the special features of manifold learning on image data sets, and to highlight the value and limitations of these approaches.
収録刊行物
-
- IPSJ Transactions on Computer Vision and Applications
-
IPSJ Transactions on Computer Vision and Applications 1 83-94, 2009
一般社団法人 情報処理学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205292820480
-
- NII論文ID
- 130000107993
-
- NII書誌ID
- AN00116647
-
- ISSN
- 18827772
- 18826695
- 03875806
-
- NDL書誌ID
- 024342470
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可