A Survey of Manifold Learning for Images

この論文をさがす

説明

Many natural image sets are samples of a low-dimensional manifold in the space of all possible images. Understanding this manifold is a key first step in understanding many sets of images, and manifold learning approaches have recently been used within many application domains, including face recognition, medical image segmentation, gait recognition and hand-written character recognition. This paper attempts to characterize the special features of manifold learning on image data sets, and to highlight the value and limitations of these approaches.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (16)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ