Strong $L^p$ convergence associated with Rellich-type discrete compactness for discontinuous Galerkin FEM
-
- Kikuchi Fumio
- Hitotsubashi University
-
- Koyama Daisuke
- The University of Electro-Communications
この論文をさがす
説明
In a preceding paper, we proved the discrete compactness properties of Rellich type for some 2D discontinuous Galerkin finite element methods (DGFEM), that is, the strong $L^2$ convergence of some subfamily of finite element functions bounded in an $H^1$-like mesh-dependent norm. In this note, we will show the strong $L^p$ convergence of the above subfamily for $1 \le p < \infty$. To this end, we will utilize the duality mappings and special auxiliary problems. The results are applicable to numerical analysis of various semi-linear problems.
収録刊行物
-
- JSIAM Letters
-
JSIAM Letters 6 (0), 25-28, 2014
一般社団法人 日本応用数理学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205301896832
-
- NII論文ID
- 130004540628
-
- ISSN
- 18830617
- 18830609
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可