Strong $L^p$ convergence associated with Rellich-type discrete compactness for discontinuous Galerkin FEM

この論文をさがす

説明

In a preceding paper, we proved the discrete compactness properties of Rellich type for some 2D discontinuous Galerkin finite element methods (DGFEM), that is, the strong $L^2$ convergence of some subfamily of finite element functions bounded in an $H^1$-like mesh-dependent norm. In this note, we will show the strong $L^p$ convergence of the above subfamily for $1 \le p < \infty$. To this end, we will utilize the duality mappings and special auxiliary problems. The results are applicable to numerical analysis of various semi-linear problems.

収録刊行物

  • JSIAM Letters

    JSIAM Letters 6 (0), 25-28, 2014

    一般社団法人 日本応用数理学会

被引用文献 (1)*注記

もっと見る

参考文献 (8)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ