強化学習法に基づく医用画像のセグメンテーションおよび関心領域の抽出

  • 臼井 幸也
    岐阜工業高等専門学校専攻科・電子システム工学専攻
  • 蔡 篤儀
    新潟大学医学部保健学科放射線技術科学専攻
  • 小島 克之
    浜松大学経営情報学部経営情報学科
  • 山田 功
    岐阜工業高等専門学校専攻科・電子システム工学専攻

書誌事項

タイトル別名
  • Medical Image Segmentation and Detection Based on Reinforcement Learning

この論文をさがす

説明

Reinforcement learning (RL) is an approach to machine intelligence. It combines the fields of dynamic programming and supervised learning to yield powerful machine-learning systems. The RL appeals to many researchers because of its generality. However, it has not been used yet in the field of image processing. In RL, the computer is simply given a goal to achieve. The computer then learns how to achieve that goal by trial-and-error interactions with its environment. Of the RL methods Q-learning is a typical learning approach. In this paper, we present a novel method for image segmentation based on the Q-learning. Additionally, we illustrate the proposed algorithm and demonstrate its effectiveness for image contour extraction and region-of-interest detection using three medical images. Our preliminary results are promising.

収録刊行物

参考文献 (14)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1390001205456447104
  • NII論文ID
    10010439533
  • NII書誌ID
    AN10156808
  • DOI
    10.11318/mii1984.17.72
  • ISSN
    09101543
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ