Numerical study on crack bifurcation of self-healing fiber-reinforced ceramic matrix composite

  • OBA Yoshitomo
    Division of System Research, Faculty of Engineering, Yokohama National University
  • TAKEO Kyohei
    Division of System Research, Faculty of Engineering, Yokohama National University
  • NAKAO Wataru
    Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University
  • OZAKI Shingo
    Division of System Research, Faculty of Engineering, Yokohama National University

説明

<p>Self-healing fiber-reinforced ceramic (shFRC) is a new functional material. When a microcrack propagates in this material, self-healing occurs owing to high-temperature oxidation. Then, the strength of the material recovers to its robust state since the microcrack is rebounded. However, to effectively demonstrate the self-healing function, a crack bifurcation, i.e., penetration/deflection, must be controlled. Therefore, the optimal composite design, in which the microcrack is induced in the interface along the fiber, is a key factor in developing shFRC. In this study, we investigate crack propagation using Finite Element Analysis (FEA). In FEA, the two-dimensional microscopic structure of shFRC with a three-layer construction is discretized. The three layers of construction are the matrix layer, the fiber bundle layer, and the non-oxide layer, called the self-healing agent. Using FEA, we examine ideal relationships of fracture stress and critical energy release rate between the fiber and interface layer considering the sintering characteristics. Furthermore, the relationship between fracture toughness, Young's modulus, and the relative density of the interlayer to induce a crack deflection at the interface is derived.</p>

収録刊行物

被引用文献 (1)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ