A Krylov subspace method for shifted linear systems and its application to eigenvalue problems
-
- OGASAWARA Masashi
- Cross Cat Co., Ltd.
-
- TADANO Hiroto
- Doctoral program in Systems and Information Engineering, University of Tsukuba
-
- SAKURAI Tetsuya
- Department of Computer Sciences, University of Tsukuba
-
- ITOH Shoji
- Department of Computer Sciences, University of Tsukuba
Bibliographic Information
- Other Title
-
- Shifted Linear Systemsに対するKrylov部分空間反復法と固有値問題への応用
- Shifted Linear Systems ニ タイスル Krylov ブブン クウカン ハンプクホウ ト コユウチ モンダイ エ ノ オウヨウ
Search this article
Description
We consider a method to solve several shifted linear systems (A+σl)x = b with shift parameter σ. Krylov subspace for shifted linear systems is not depend on the parameter σ, therefore we can solve several shifted linear systems simultaneously without generating Krylov subspace for each parameter cr. In this paper, we show that shifted linear systems appear in an eigensolver using numerical integration. We applied Krylov subspace methods for shifted linear systems in this eigensolver. We have also presented some numerical examples illustrate the efficiency of the method.
Journal
-
- Transactions of the Japan Society for Industrial and Applied Mathematics
-
Transactions of the Japan Society for Industrial and Applied Mathematics 14 (3), 193-205, 2004
The Japan Society for Industrial and Applied Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390001205767073664
-
- NII Article ID
- 110001878255
-
- NII Book ID
- AN10367166
-
- ISSN
- 09172246
- 24240982
-
- NDL BIB ID
- 7105862
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL
- CiNii Articles
- KAKEN
-
- Abstract License Flag
- Disallowed