A Lagrangian Approach to Deriving Local-Energy-Preserving Numerical Schemes for the Euler-Lagrange Partial Differential Equations and an Application to the Nonreflecting Boundary Conditions for the Linear Wave Equation(Theory,<Special Topics>Activity Group "Scientific Computation and Numerical Analysis")
-
- Yaguchi Takaharu
- Department of Computational Science, Graduate School of System Informatics, Kobe University
Bibliographic Information
- Other Title
-
- Lagrange力学に基づく局所エネルギー保存型数値解法導出法と線形波動方程式に対する無反射境界条件への応用(理論,<特集>科学技術計算と数値解析研究部会)
- Lagrange力学に基づく局所エネルギー保存型数値解法導出法と線形波動方程式に対する無反射境界条件への応用
- Lagrange リキガク ニ モトズク キョクショ エネルギー ホゾンガタ スウチカイホウ ドウシュツホウ ト センケイ ハドウ ホウテイシキ ニ タイスル ムハンシャ キョウカイ ジョウケン エ ノ オウヨウ
Search this article
Description
We propose a Lagrangian approach to deriving local-energy-preserving finite difference schemes for the Euler-Lagrange partial differential equations regarding that, from Noether's theorem, the symmetry of time translation of Lagrangian yields the energy conservation law. We first observe that the local symmetry of time translation of Lagrangian derives the Euler-Lagrange equation and the energy conservation law, simultaneously. The new method is a combination of a discrete counter part of this statement and the discrete gradient method. As an application of the discrete local energy conservation law, we also discuss discretization of the nonreflecting boundary conditions for the linear wave equation.
Journal
-
- Transactions of the Japan Society for Industrial and Applied Mathematics
-
Transactions of the Japan Society for Industrial and Applied Mathematics 22 (3), 143-169, 2012
The Japan Society for Industrial and Applied Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390001205767219072
-
- NII Article ID
- 110009518457
-
- NII Book ID
- AN10367166
-
- ISSN
- 09172246
- 24240982
-
- NDL BIB ID
- 024019004
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- CiNii Articles
-
- Abstract License Flag
- Disallowed