Asymptotic Analysis of a New Multishift QR Method for Symmetric Tridiagonal Eigenproblems(Theory,Aigorithms for Matrix/Eigenvalue Problems and their Applications,<Special Issue>Joint Symposium of JSIAM Activity Groups 2008)
-
- Miyata Takafumi
- Graduate School of Engineering, Nagoya University
-
- Iwasaki Masashi
- Faculty of Human Environment, Kyoto Prefectural University
-
- Yamamoto Yusaku
- Graduate School of Engineering, Nagoya University
-
- Zhang Shao-Liang
- Graduate School of Engineering, Nagoya University
Bibliographic Information
- Other Title
-
- 対称三重対角行列向けマルチシフトQR法の漸近的収束性解析(理論,行列・固有値問題の解法とその応用,<特集>平成20年研究部会連合発表)
- 対称三重対角行列向けマルチシフトQR法の漸近的収束性解析
- タイショウ 3ジュウ タイカク ギョウレツ ムケ マルチシフト QRホウ ノ ゼンキンテキ シュウソクセイ カイセキ
Search this article
Description
The Multishift QR method (M-QR) enables us to compute all the eigenvalues of a symmetric tridiagonal matrix on parallel machines. To use all processors sufficiently, the Deferred shift QR method (D-QR) is proposed. However, the convergence rate of D-QR is numerically inferior to that of M-QR. Recently, the Fully Pipelined Multishift QR method (FPM-QR) is proposed. FPM-QR shows better convergence than D-QR while keeping the high level of processor utilization. In this paper, we analyze the asymptotic behavior of FPM-QR with two shifts.
Journal
-
- Transactions of the Japan Society for Industrial and Applied Mathematics
-
Transactions of the Japan Society for Industrial and Applied Mathematics 18 (4), 563-577, 2008
The Japan Society for Industrial and Applied Mathematics
- Tweet
Details 詳細情報について
-
- CRID
- 1390001205768154368
-
- NII Article ID
- 110007028866
-
- NII Book ID
- AN10367166
-
- ISSN
- 09172246
- 24240982
-
- NDL BIB ID
- 9771126
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- CiNii Articles
-
- Abstract License Flag
- Disallowed