-
- 兼子 佳久
- 大阪市立大学
書誌事項
- タイトル別名
-
- 1502 Micros tructure and Strength of Nanomultilayers Fabricated by Electrodeposition
説明
Mechanical properties and microstructure of Ni/Cu multilayered films have been investigated. The Ni/Cu multilayers were fabricated by electrodeposition technique. Thickness of individual Ni and Cu layers was set at h=20nm and 50nm, and total thickness of the multilayers was about 4μm. From electron diffraction patterns obtained by transmission electron microscope (TEM) observation, both the Ni and Cu layers were epitaxially grown during the electrodeposition. After being removed from a substrate, the Ni/Cu multilayered films were monotomcally strained to examine tensile strength. Prior to the tensile test, some multilayers were annealed. Ultimate tensile strength of the as-deposited multilayer of h=20nm was about 900MPa. After the annealing at 573K for 1 hour, the ultimate tensile strength of the 20nm multilayer increased up to 1GPa. However, the annealing at 773K significantly lowered tensile strength because disappearance of the multilayered microstructure. From the X-ray diffraction analysis of the as-deposited 20nm multilayer, the X-ray peaks from the Ni and Cu layers were unclear: both the layers had almost the same lattice constant. On the other hand, clear Ni and Cu peaks were detected at the annealed 20nm multilayer. It is thus probable that the increased strength in the annealed 20nm multilayer was caused by appearance of misfit dislocations which normally exist at an interface between the crystals having different lattice constants.
収録刊行物
-
- M&M材料力学カンファレンス
-
M&M材料力学カンファレンス 2010 (0), 77-78, 2010
一般社団法人 日本機械学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205871766656
-
- NII論文ID
- 110008741002
-
- ISSN
- 24242845
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可