Experimental Evaluation of Crevice Corrosion Depth for Stainless Steels in Sea Water Environments

Bibliographic Information

Other Title
  • ステンレス鋼の海水系環境中におけるすきま腐食深さの実験室的評価

Description

Growth rates of crevice corrosion for various stainless steels in sea water environments were evaluated under potentiostatic condition. And perforation time for the stainless steel plate was estimated by time dependence of the maximum crevice corrosion depth.<br>Crevice corrosion resistance of stainless steels deteriorated with increase of chloride ion concentration. Crevice corrosion initiated and grew for all the stainless steels tested in this study in the solutions with more than 100 ppm chloride ion. Dmax, maximum crevice corrosion depth, was approximated as power low function as Dmax=A·tm. Term A, Dmax at 1 hour, was increased with chloride ion concentration. On the other hand, term m showed from 0.3 to 0.5 independent with chloride concentration. It seems that values of m should be explained by dissolved morphology at corrosion crevice and assuming rate determining step for metal dissolution. For example, perforation time of crevice corrosion for the 1 mm thick SUS 304 stainless steel in 19 ppm chloride ion solution at 50ºC was estimated about 4 years, 21 years for SUS316L stainless steel and 66 years for SUS329J4L stainless steel. And perforation times for SUS304 stainless steel were almost same under potentiostatic condition between 300 mV (vs. SSE) and 440 mV (vs. SSE).

Journal

Citations (7)*help

See more

References(3)*help

See more

Details 詳細情報について

  • CRID
    1390001206259827840
  • NII Article ID
    130004502935
  • DOI
    10.3323/jcorr.56.62
  • ISSN
    18819664
    09170480
  • Text Lang
    ja
  • Data Source
    • JaLC
    • Crossref
    • CiNii Articles
  • Abstract License Flag
    Disallowed

Report a problem

Back to top