ニューラルネットワークと計算力学に基づくシステム同定の検討 第2報  計測点の低減法に関する研究

書誌事項

タイトル別名
  • System Identification Using Neural Network and Computational Mechanics. 2nd Report. Reduction of Necessary Response Measurement Points.
  • ニューラルネットワーク ト ケイサン リキガク ニ モトズク システム ドウテ

この論文をさがす

説明

Computer simulation with finite element model (FEM) plays more and more important role in design stage. For the sake that there are always some differences in physical parameters from those of real structure, it is difficult to make an accurate model actually. This paper contributes the approach to detect the inconsistency between the real structure and the FEM efficiently, only a few necessary measurement locations are required with the sensitivities of eigen frequency and response of structure. Changes in structural parameters, induced by damage, affect the eigensolution matrices and may cause the change of eigen frequency and response of structure. Use of these values to select modes and measurement points for use in damage location or sensor placement studies is proposed and demonstrated by application to a simply supported plate. Learning Vector Quantization (LVQ) Neural Network besed on pattern classifier is used to detect the location of damage. Results show that the LVQ has the superiority to Holographic Neural Network in pattern classification.

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (21)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ