Magnetic Damper Consisting of Circular Coil and Columnar Magnet(Mechanical Systems)

Bibliographic Information

Other Title
  • 円形コイルと円柱磁石で構成された磁気ダンパ(機械力学,計測,自動制御)
  • 円形コイルと円柱磁石で構成された磁気ダンパ
  • エンケイ コイル ト エンチュウ ジシャク デ コウセイ サレタ ジキ ダンパ

Search this article

Abstract

The magnetic damping force of a typical magnetic damper is caused by magnetic flux densities perpendicular to the relative motion between a magnet and a conducting plate. Also, it is known that a magnetic damper is composed of a columnar magnet and a circular coil instead of a conducting plate, and the magnetic damping force generates when the magnet moves in the axial direction of the coil. In this paper, we created newly the magnetic damper consisting of a circular coil and a columnar magnet, and conducted the experiments and the modeling of the magnetic damping force. As a result, it becomes clear that the spatial variation of the magnetic flux density in the axial direction causes the magnetic damping force. Moreover, using the equation of continuity, the axial magnetic flux can be derived from the radial magnetic flux. Consequently, the analytical results agree well with the experimental results.

Journal

Citations (1)*help

See more

References(8)*help

See more

Details 詳細情報について

Report a problem

Back to top