Comparison of the Vibration Mode of Metals in HNO3 by a Partial Least-Squares Regression Analysis of Near-Infrared Spectra

Bibliographic Information

Other Title
  • Comparison of the Vibration Mode of Metals in HNO<sub>3</sub>by a Partial Least-Squares Regression Analysis of Near-Infrared Spectra

Search this article

Abstract

The near-infrared (NIR) spectra of such metals as Cu(II), Mn(II), Zn(II) and Fe(III) in HNO3 in the 700–1860 nm region were subjected to a partial least-squares regression analysis and leave-out cross-validation to develop chemometric models. The models yielded a coefficient of determination in cross validation of 0.9744 [Cu(II)], 0.9631 [Mn(II)], 0.9154 [Zn(II)] and 0.741 [Fe(III)]. The regression coefficients for Cu(II), Mn(II) and Zn(II), but not for Fe(III), showed strong negative peaks at around 1050–1200 nm, a zone where spectral bands have been reported to decrease with increasing pH value. A positive peak at around 710–750 nm, which may have been due to water absorption, was observed in regression coefficients of Cu(II), Mn(II) and Zn(II) but not in Fe(III), while a negative peak was observed in that for Fe(III) at around 710–750 nm. These results indicate that the divalent cations [Cu(II), Mn(II) and Zn(II)] showed different absorption in the NIR region from the trivalent cation [Fe(III)], suggesting that the vibration mode of water, which mirrors the interaction between cations and water, may be influenced by valency.

Journal

Citations (4)*help

See more

References(22)*help

See more

Details 詳細情報について

Report a problem

Back to top