焼入応力におよぼす鋼種および硬化程度の影響

書誌事項

タイトル別名
  • Influence of Steel Grade and Degree of Hardening on Quenching Stresses
  • ヤキイレ オウリョク ニ オヨボス コウシュ オヨビ コウカ テイド ノ エイキョウ

この論文をさがす

抄録

The quenching stresses of 18mmφ commercial steel cylinders were measured by the Sachs’ method utilizing electric spark machining. The influences of carbon content of steel and of the bulk of unhardened core upon these stresses were investigated. The results area summarized as follows: (1) The stress distribution of water-quenched, through-hardened steels were of thermal stress-transformational stress superposition type. The center compression declined continuously with decrease of the carbon content and the surface compression exhibited its maximum at medium carbon content. The tension peak in the intermediate zone, was located near the surface in high-carbon steel and shifted deep inward with decrease of the carbon content, which constitutes one of the reasons why a low-carbon steel is less susceptible to quenching crack than a high-carbon steel. (2) The stress distribution of oil-quenched, through-hardened high-carbon steel was of transformational stress type. But, when the steel has a small unhardened core, the longitudinal stress in this area was converted into an exceedingly great tension and that in the hardened area into a small compression; as the core increased in the bulk, the tension in the core again dropped abruptly, while the compression in the hardened area increased. Owing to these stress distribution, a through-hardened steel is more liable to suffer a quenching crack (longitudinal) than a core-hardened, but an inner-crack (transverse) would occur even in the latter, if the core is small. Meanwhile, between these two dangerous cases, there exists a remarkable hardened state, in which the quenching stresses are small as a whole and no cracking is caused.

収録刊行物

  • 日本金属学会誌

    日本金属学会誌 26 (12), 745-748, 1962

    公益社団法人 日本金属学会

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ