可変パラメータを含むサンプル値系の過渡応答の解析

書誌事項

タイトル別名
  • Analysis of the Transient Response of Sampled-Data Systems Containing Time-Varying Parameters

この論文をさがす

説明

First, a sampled-data system which can be described by a linear time-variant vector differential equation X(t)=A(t)X(t) in each step interval T0 is considered. The step interval T0 is defined as T0=T/m, where T is the sampling period and m is a positive integer. Generally, this equation cannot be solved analytically. So, regarding A(t) as fixed in each step interval T0 and introducing the time shift operator δ(·), we can solve the equation numerically. That is, X(t)=An, iX(t), X(nT+iT0+)=Bn, i(T0)X(nT+iT0-)+Cn, i(T0)X(nT-), for nT+iT0<tnT+(i+1)T0, n=0, 1, 2, …, i=0, 1, 2, …, m-1, where Bn, i(T0) and Cn, i(T0) involve δ(·).<br>A sampled-data system with dead time can be analyzed similarly as a sampled-data system without dead time by introducing the time shift operator.<br>Next, a sampled-data system which can be described by a nonlinear time-variant vector differential equation in each step interval T0 is considered.<br>In this case, by introducing the variable equivalent gain ln, i of a nonlinear element, it can be solved similarly as in the linear case.<br>The error of the approximate solution is considered in chapter 4. It is proved that the error can be made arbitrarily small by choosing sufficiently small T0.

収録刊行物

  • 計測と制御

    計測と制御 7 (11), 753-760, 1968

    公益社団法人 計測自動制御学会

詳細情報 詳細情報について

  • CRID
    1390001206517271040
  • NII論文ID
    130003698606
  • DOI
    10.11499/sicejl1962.7.753
  • ISSN
    18838170
    04534662
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ