畳み込みニューラルネットワークを用いたJPEG画像における改ざん領域の検出

書誌事項

タイトル別名
  • Detecting Doctored Region in JPEG Image using Convolutional Neural Networks
  • タタミコミ ニューラルネットワーク オ モチイタ JPEG ガゾウ ニ オケル アラタメザンリョウイキ ノ ケンシュツ

この論文をさがす

説明

<p>Many digital pictures are used as evidence in criminal investigation. It is very important to check whether they are doctored or not. This paper proposes a method for detecting doctored region in JPEG image using a convolutional neural network (CNN). In the proposed method, DCT coefficients are input to the CNN. Its output is a binary segmented image in which doctored and non-doctored regions are shown with white and black pixels, respectively. In our experiment, 45 types of CNN models were created and compared. The detection accuracy of the best model achieved 0.63 in terms of F-measure, which is larger about 2.3 times than that of our preliminary method based on support vector machine (SVM).</p>

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (5)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ