頂上分岐および多重分岐解析に適用可能な計算漸近分岐理論の構築

書誌事項

タイトル別名
  • Formulation of a computational asymptotic bifurcation theory applicable to hill-top branching and multiple bifurcation analyses

抄録

<p>To diagnose hill-top branching and multiple bifurcation, which exhibit two critical eigenvalues of the tangent stiffness matrix in stability problems, a sophisticated computational asymptotic bifurcation theory is developed. The theory generally uses three modes which are composed of two homogeneous solutions (critical eigenvectors) and one particular solution of the singular stiffness equations. The first- and second-order derivatives of the stiffness matrix with respect to nodal degrees-of-freedom (DoF) are required to formulate the proposed computational asymptotic bifurcation theory. In two benchmark problems of hill-top branching and multiple bifurcation, the validation and performance of the proposed theory are discussed.</p>

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (17)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ