A DYNAMIC PROGRAMMING ALGORITHM FOR OPTIMIZING BASEBALL STRATEGIES
-
- Kira Akifumi
- Gunma University
-
- Inakawa Keisuke
- Akita Prefectural University
-
- Fujita Toshiharu
- Kyushu Institute of Technology
この論文をさがす
説明
<p>In this paper, baseball is formulated as a finite non-zero-sum Markov game with approximately 6.45 million states. We give an effective dynamic programming algorithm which computes equilibrium strategies and the equilibrium winning percentages for both teams in less than 2 second per game. Optimal decision making can be found depending on the situation—for example, for the batting team, whether batting for a hit, stealing a base or sacrifice bunting will maximize their win percentage, or for the fielding team, whether to pitch to or intentionally walk a batter, yields optimal results. Based on this model, we discuss whether the last-batting team has an advantage. In addition, we compute the optimal batting order, in consideration of the decision making in a game.</p>
収録刊行物
-
- 日本オペレーションズ・リサーチ学会論文誌
-
日本オペレーションズ・リサーチ学会論文誌 62 (2), 64-82, 2019-04-25
公益社団法人 日本オペレーションズ・リサーチ学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001288134511104
-
- NII論文ID
- 130007636494
-
- NII書誌ID
- AA00703935
-
- ISSN
- 21888299
- 04534514
-
- HANDLE
- 10228/00007296
-
- NDL書誌ID
- 029632872
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- IRDB
- NDLサーチ
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可