- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Analysis of Diffusion-weighted MR Images Based on a Gamma Distribution Model to Differentiate Prostate Cancers with Different Gleason Score
-
- Tomita Hiroko
- Department of Radiology, National Defense Medical College
-
- Soga Shigeyoshi
- Department of Radiology, National Defense Medical College
-
- Suyama Yohsuke
- Department of Radiology, National Defense Medical College
-
- Ito Keiichi
- Department of Urology, National Defense Medical College
-
- Asano Tomohiko
- Department of Urology, National Defense Medical College
-
- Shinmoto Hiroshi
- Department of Radiology, National Defense Medical College
Search this article
Description
<p>Purpose: Prostate cancer management includes identification of clinically significant cancers that may require curative treatment. Statistical models based on gamma distribution can describe diffusion signal decay curves of prostate cancer. The purpose of this study was to evaluate the ability of parameters obtained with the gamma model in differentiating prostate cancers with different Gleason score values.</p><p>Methods: This study included 155 patients with prostate cancer who underwent multiparametric magnetic resonance imaging prior to prostate biopsy (127 patients) or radical prostatectomy (28 patients) between January 2015 and June 2017; 159 foci of prostate cancer were included in our study. We compared cases scored as Gleason score (GS) 3 + 3 and GS ≥ 3 + 4, and analyzed cases scored as GS ≤ 3+ 4 and GS ≥ 4 + 3 based on the gamma model (Frac < 1.0, Frac < 0.8, Frac < 0.5, Frac < 0.3, and Frac > 3.0), and apparent diffusion coefficient (ADC).</p><p>Results: Among 159 cancerous lesions in 155 patients, 13 (8.2%) were GS 3 + 3 prostate cancers, 51 (32.0%) were GS 3 + 4 prostate cancers, 30 (18.2%) were GS 4 + 3 cancers, and 65 (40.9%) were GS ≥ 4 + 4 cancers. Frac < 0.3, Frac < 0.5, Frac < 0.8, and Frac < 1.0 were significantly higher and ADC values were significantly lower in GS ≥ 4 + 3 cancers than in GS ≤ 3 + 4 cancers (P < 0.01, P < 0.01, P < 0.01, P = 0.01, and P < 0.01, respectively). With receiver operating characteristic (ROC) analysis, Frac < 0.3 and Frac < 0.5 had significantly greater area under the ROC curve for discriminating GS ≥ 4 + 3 cancers from GS ≤ 3 + 4 cancers than ADC (P = 0.03, P < 0.01, respectively).</p><p>Conclusion: Frac < 0.3 and Frac < 0.5 showed higher diagnostic performance than ADC for differentiating GS ≥ 4 + 3 from GS ≤ 3 + 4 cancers. The gamma model may add additional value in discrimination of tumor grades.</p>
Journal
-
- Magnetic Resonance in Medical Sciences
-
Magnetic Resonance in Medical Sciences 19 (1), 40-47, 2020
Japanese Society for Magnetic Resonance in Medicine