A3CにおけるAttention機構を用いた視覚的説明

書誌事項

タイトル別名
  • Visual explanation using Attention mechanism in A3C

説明

<p>深層強化学習の代表的な手法であるAsynchronous Advantage Actor-Critic (A3C)は,ロボット制御やゲームタスクにおいて高精度な結果を獲得している.しかし,推論時におけるモデル内部の演算が複雑であるため,モデルの推論結果に対する判断根拠が不明確である.そのため,モデルがどのように判断し推論したか容易に説明できる仕組みが必要である.本研究では,Policy branchの特徴マップに対しAttention mapを用いてマスク処理を行うMask Attention A3Cを提案する.Atari2600を用いた実験により,スコアの比較及び獲得したAttention mapを用いた視覚的説明を行う.また,注視領域を反転させた場合においてもスコアを確認することで,獲得したAttention mapの有効性を示す.</p>

収録刊行物

キーワード

詳細情報 詳細情報について

  • CRID
    1390003825189371776
  • NII論文ID
    130007856908
  • DOI
    10.11517/pjsai.jsai2020.0_2j6gs204
  • ISSN
    27587347
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ