CNNを用いたX線投影画像のノイズ除去に基づいたCTスキャンニングの品質向上
書誌事項
- タイトル別名
-
- Quality Improvement of CT Scanning Using CNN-based Denoising of X-ray Transmission Images
説明
<p>High precision 3D models can be used for various purpose like reverse engineering, flaw detection etc. However, to obatin such models, a large amount of projection images with low noise level are required and to get images with low noise level, the scanning time is very long. The purpose of my research is to denoise noisy CT images obtained from fast scanning, thus making them be eligible to be used for high precision reconstuction, reducing the total processing time. I applied deep learning approach to solve this problem, which I used a CNN with deep structure and two unique techniques: residual learning and batch normalization. The noise level of images are significantly reduced, and gained a more satisfying result than traditional methods.The total processing time is also reduced significantly.</p>
収録刊行物
-
- 精密工学会学術講演会講演論文集
-
精密工学会学術講演会講演論文集 2020S (0), 202-203, 2020-03-01
公益社団法人 精密工学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390004222624863232
-
- NII論文ID
- 130007896528
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可