DETECTION OF DETERIORATION AREA ON CONCRETE SURFACE USING SEGMENTATION METHOD BY DEEP LEARNING
-
- AOSHIMA Kosuke
- 株式会社福山コンサルタント
-
- YAMAMOTO Takumi
- 山口大学大学院 創成科学研究科電気電子情報系専攻
-
- NAKANO Satoshi
- 株式会社福山コンサルタント
-
- NAKAMURA Hideaki
- 山口大学大学院 創成科学研究科電気電子情報系専攻
Bibliographic Information
- Other Title
-
- 深層学習によるセグメンテーション手法を用いたコンクリート表面の変状領域の検出
Description
<p>In maintaining and managing social infrastructure, saving labor and improving efficiency in visual inspections is one of the urgent issues in the recent years. Therefore, in this study, in order to solve this problem, we apply segmentation method using deep learning to images acquired by a digital cameras and examined a method that automatically detects the deformation and classifies the degree of damage. In addition, we also investigated a method that uses depth images, and confirmed that the RGB-D camera is an effective device for labor saving and efficiency of visual inspection.</p>
Journal
-
- Artificial Intelligence and Data Science
-
Artificial Intelligence and Data Science 1 (J1), 481-490, 2020-11-11
Japan Society of Civil Engineers
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390004951546639872
-
- NII Article ID
- 130007940769
-
- ISSN
- 24359262
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- CiNii Articles
- Crossref
-
- Abstract License Flag
- Disallowed