A Hardware-Oriented Random Number Generation Method and A Verification System for FPGA
-
- Hori Sansei
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
-
- Tamukoh Hakaru
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
説明
Deep learning technology has made remarkable progress in recent years and has been applied to a variety of applications such as smartphones and cloud servers. These systems employ dedicated processors to save power consumptions and process massive data. In this paper, we introduce a hardware-oriented restricted Boltzmann machine and propose a field-programmable gate array (FPGA) infrastructure for easy verification of user circuits. The infrastructure makes it easy to communicate and control between the host PC and the user circuit.
収録刊行物
-
- 人工生命とロボットに関する国際会議予稿集
-
人工生命とロボットに関する国際会議予稿集 26 12-15, 2021-01-21
株式会社ALife Robotics
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390006750774987264
-
- ISSN
- 21887829
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可