深層学習とモンテカルロ木探索を用いた強化学習の組合せ最適化問題での実験とフレーム問題に関する1考察
-
- 疋田 聡
- AGICRON研究所株式会社
書誌事項
- タイトル別名
-
- Experiments on Combinatorial Optimization with Reinforcement Learning Using Deep Learning and Monte Carlo Tree Search and a Consideration of Frame Problem
説明
<p>Reinforcement learning using deep learning and Monte Carlo tree search has been reported to be extremely effective as an artificial intelligence algorithm that is used in AlphaZero etc. and is widely applicable to various games. Since this method is essentially an algorithm that solves the search problem efficiently, it is possible to solve a general combination optimization problem as well as a game. Therefore, in order to deepen the understanding of this method, experiments were applied to combinatorial optimization problem, and the results are reported. The relationship between this method and the frame problem also be described.</p>
収録刊行物
-
- 人工知能学会第二種研究会資料
-
人工知能学会第二種研究会資料 2018 (AGI-009), 07-, 2018-08-30
一般社団法人 人工知能学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390007923750359808
-
- NII論文ID
- 130008089090
-
- ISSN
- 24365556
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用可