Generalized Weak Weyl Relation and Decay of Quantum Dynamics

この論文をさがす

説明

Let $H$ be a self-adjoint operator on a Hilbert space ${\cal H}$, $T$ be a symmetric operator on ${\cal H}$ and $K(t)$ ($t\in \R$) be a bounded self-adjoint operator on ${\cal H}$. We say that $(T,H,K)$ obeys the {\it generalized weak Weyl relation} (GWWR) if $e^{-itH}D(T) \subset D(T)$ for all $t \in \R$ and $Te^{-itH}\psi=e^{-itH}(T+K(t))\psi, \forall \psi \in D(T)$ ( $D(T)$ denotes the domain of $T$). In the context of quantum mechanics where $H$ is the Hamiltonian of a quantum system, we call $T$ a {\it generalized time opeartor} of $H$. We first investigate, in an abstract framework, mathematical structures and properties of triples $(T,H,K)$ obeying the GWWR. These include the absolute continuity of the spectrum of $H$ restricted to a closed subspace of ${\cal H}$, an uncertainty relation between $H$ and $T$ (a \lq\lq{time-energy uncertainty relation}"), the decay property of transition probabilities $\left|\lang \psi,e^{-itH}\phi\rang \right|^2$ as $|t| \to \infty$ for all vectors $\psi$ and $\phi$ in a subspace of ${\cal H}$. We describe methods to construct various examples of triples $(T,H,K)$ obeying the GWWR. In particular we show that there exist generalized time operators of second quantization operators on Fock spaces (full Fock spaces, boson Fock spaces, fermion Fock spaces) which may have applications to quantum field models with interactions.

収録刊行物

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1390009224795305728
  • NII論文ID
    120006459426
  • DOI
    10.14943/83866
  • HANDLE
    2115/1390
    2115/69520
  • ISSN
    0129055X
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
    • KAKEN
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ