On radial solutions of semi-relativistic Hartree equations
説明
We consider the semi-relativistic Hartree type equation with nonlocal nonlinearity $F(u) = \lambda (|x|^{-\gamma} * |u|^2)u, 0 < \gamma < n, n \ge 1$. In \cite{chooz2}, the global well-posedness (GWP) was shown for the value of $\gamma \in (0, \frac{2n}{n+1}), n \ge 2$ with large data and $\gamma \in (2, n), n \ge 3$ with small data. In this paper, we extend the previous GWP result to the case for $\gamma \in (1, \frac{2n-1}n), n \ge 2$ with radially symmetric large data. Solutions in a weighted Sobolev space are also studied.
収録刊行物
-
- Hokkaido University Preprint Series in Mathematics
-
Hokkaido University Preprint Series in Mathematics 792 1-10, 2006
Department of Mathematics, Hokkaido University
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390009224795371392
-
- NII論文ID
- 120006459496
-
- DOI
- 10.14943/83942
-
- HANDLE
- 2115/69600
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用可